Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (Malus pumila).

Identifieur interne : 000430 ( Main/Exploration ); précédent : 000429; suivant : 000431

Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (Malus pumila).

Auteurs : Hyungmin Rho [États-Unis] ; Victor Van Epps [États-Unis] ; Soo-Hyung Kim [États-Unis] ; Sharon L. Doty [États-Unis]

Source :

RBID : pubmed:32397574

Abstract

Endophytes are fungi, bacteria, or yeast symbionts that live in the intercellular spaces or vascular tissues of host plants. Investigations indicate that endophytes isolated from the Salicaceae family (Populus and Salix) hosts provide several benefits that promote plant growth, including but not limited to di-nitrogen fixation, plant hormone production, nutrient acquisition, stress tolerance, and defense against phytopathogens. In exchange, the microorganisms receive domicile and photosynthates. Considering the known characteristics of nitrogen fixation and plant hormone production, we hypothesized that apple trees grown under nitrogen-limited conditions would show improved biometrics with endophyte inoculation. Our research objectives were to investigate the endophyte effects on plant physiology and fruiting. We examined these effects through ecophysiology metrics involving rates of photosynthesis, stomatal conductance and density, transpiration, biomass accretion, chlorophyll content and fluorescence, and fruit soluble sugar content and biomass. Our results showed evidence of the endophytes' colonization in apple trees, decreased stomatal density, delayed leaf senescence, and increased lateral root biomass with endophytes. A highlight of the findings was a significant increase in both fruit soluble sugar content and biomass. Future research into the mechanistic underpinnings of this phenomenon stands to offer novel insights on how microbiota may alter carbohydrate metabolism under nitrogen-deficient conditions.

DOI: 10.3390/microorganisms8050699
PubMed: 32397574
PubMed Central: PMC7284893


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (
<i>Malus pumila</i>
).</title>
<author>
<name sortKey="Rho, Hyungmin" sort="Rho, Hyungmin" uniqKey="Rho H" first="Hyungmin" last="Rho">Hyungmin Rho</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Van Epps, Victor" sort="Van Epps, Victor" uniqKey="Van Epps V" first="Victor" last="Van Epps">Victor Van Epps</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Washington, Seattle, WA 98195-1800</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Soo Hyung" sort="Kim, Soo Hyung" uniqKey="Kim S" first="Soo-Hyung" last="Kim">Soo-Hyung Kim</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Doty, Sharon L" sort="Doty, Sharon L" uniqKey="Doty S" first="Sharon L" last="Doty">Sharon L. Doty</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32397574</idno>
<idno type="pmid">32397574</idno>
<idno type="doi">10.3390/microorganisms8050699</idno>
<idno type="pmc">PMC7284893</idno>
<idno type="wicri:Area/Main/Corpus">000305</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000305</idno>
<idno type="wicri:Area/Main/Curation">000305</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000305</idno>
<idno type="wicri:Area/Main/Exploration">000305</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (
<i>Malus pumila</i>
).</title>
<author>
<name sortKey="Rho, Hyungmin" sort="Rho, Hyungmin" uniqKey="Rho H" first="Hyungmin" last="Rho">Hyungmin Rho</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Van Epps, Victor" sort="Van Epps, Victor" uniqKey="Van Epps V" first="Victor" last="Van Epps">Victor Van Epps</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Washington, Seattle, WA 98195-1800</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Soo Hyung" sort="Kim, Soo Hyung" uniqKey="Kim S" first="Soo-Hyung" last="Kim">Soo-Hyung Kim</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Doty, Sharon L" sort="Doty, Sharon L" uniqKey="Doty S" first="Sharon L" last="Doty">Sharon L. Doty</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microorganisms</title>
<idno type="ISSN">2076-2607</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Endophytes are fungi, bacteria, or yeast symbionts that live in the intercellular spaces or vascular tissues of host plants. Investigations indicate that endophytes isolated from the Salicaceae family (
<i>Populus</i>
and
<i>Salix</i>
) hosts provide several benefits that promote plant growth, including but not limited to di-nitrogen fixation, plant hormone production, nutrient acquisition, stress tolerance, and defense against phytopathogens. In exchange, the microorganisms receive domicile and photosynthates. Considering the known characteristics of nitrogen fixation and plant hormone production, we hypothesized that apple trees grown under nitrogen-limited conditions would show improved biometrics with endophyte inoculation. Our research objectives were to investigate the endophyte effects on plant physiology and fruiting. We examined these effects through ecophysiology metrics involving rates of photosynthesis, stomatal conductance and density, transpiration, biomass accretion, chlorophyll content and fluorescence, and fruit soluble sugar content and biomass. Our results showed evidence of the endophytes' colonization in apple trees, decreased stomatal density, delayed leaf senescence, and increased lateral root biomass with endophytes. A highlight of the findings was a significant increase in both fruit soluble sugar content and biomass. Future research into the mechanistic underpinnings of this phenomenon stands to offer novel insights on how microbiota may alter carbohydrate metabolism under nitrogen-deficient conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32397574</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2076-2607</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Microorganisms</Title>
<ISOAbbreviation>Microorganisms</ISOAbbreviation>
</Journal>
<ArticleTitle>Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (
<i>Malus pumila</i>
).</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E699</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/microorganisms8050699</ELocationID>
<Abstract>
<AbstractText>Endophytes are fungi, bacteria, or yeast symbionts that live in the intercellular spaces or vascular tissues of host plants. Investigations indicate that endophytes isolated from the Salicaceae family (
<i>Populus</i>
and
<i>Salix</i>
) hosts provide several benefits that promote plant growth, including but not limited to di-nitrogen fixation, plant hormone production, nutrient acquisition, stress tolerance, and defense against phytopathogens. In exchange, the microorganisms receive domicile and photosynthates. Considering the known characteristics of nitrogen fixation and plant hormone production, we hypothesized that apple trees grown under nitrogen-limited conditions would show improved biometrics with endophyte inoculation. Our research objectives were to investigate the endophyte effects on plant physiology and fruiting. We examined these effects through ecophysiology metrics involving rates of photosynthesis, stomatal conductance and density, transpiration, biomass accretion, chlorophyll content and fluorescence, and fruit soluble sugar content and biomass. Our results showed evidence of the endophytes' colonization in apple trees, decreased stomatal density, delayed leaf senescence, and increased lateral root biomass with endophytes. A highlight of the findings was a significant increase in both fruit soluble sugar content and biomass. Future research into the mechanistic underpinnings of this phenomenon stands to offer novel insights on how microbiota may alter carbohydrate metabolism under nitrogen-deficient conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rho</LastName>
<ForeName>Hyungmin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Epps</LastName>
<ForeName>Victor</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Soo-Hyung</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doty</LastName>
<ForeName>Sharon L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2012-68002-19824</GrantID>
<Agency>National Institute of Food and Agriculture</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Microorganisms</MedlineTA>
<NlmUniqueID>101625893</NlmUniqueID>
<ISSNLinking>2076-2607</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">endophytes</Keyword>
<Keyword MajorTopicYN="N">fruiting</Keyword>
<Keyword MajorTopicYN="N">phytohormone</Keyword>
<Keyword MajorTopicYN="N">plant growth-promoting symbionts</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32397574</ArticleId>
<ArticleId IdType="pii">microorganisms8050699</ArticleId>
<ArticleId IdType="doi">10.3390/microorganisms8050699</ArticleId>
<ArticleId IdType="pmc">PMC7284893</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Signal Behav. 2018;13(8):e1500067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30081765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2014 Jul;106(1):85-125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24445491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(6):1579-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19246595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2010 Aug;18(8):365-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20598545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Mar;81(6):907-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25645593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1998 Jan 7;190(1):63-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9473391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Mar;15(3):233-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11952126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2001 May 1;2(3):135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Mar;14(3):358-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11277433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Jun 06;5:283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24936202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2012 Feb;63(2):405-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21837472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Sep 22;11(9):e0163186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27656886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Apr 17;4:79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23616786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2020 Jan 7;71(2):707-718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31587073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Aug;65(16):4561-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25028558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):188-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21734113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insects. 2015 Jun 26;6(3):626-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26463407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009 Jul 14;9:163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19602260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2014 Jan 20;169(1):30-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24095256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Oct;65(19):5631-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25114015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Mar 13;8:386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 02;9:188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29552021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scientifica (Cairo). 2012;2012:963401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24278762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):314-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9282-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Recent Pat Biotechnol. 2010 Jan;4(1):81-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20201804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2018 Aug 7;16(8):e2006352</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30086128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2008 Oct;16(10):463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18789693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(2):599-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24117518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Mar 28;15(3):e2001793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28350798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Aug;65(16):4489-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25221812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1981 Jan;27(1):8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7214234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1078-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2009 Sep;113(Pt 9):973-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19539760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ambio. 2002 Mar;31(2):126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12078001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Mar;21(3):218-229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26875056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Nov;67(11):5285-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11679357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2012 Nov;113(5):1139-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2015 Sep;177(1):175-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26164855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2008 Jan;278(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Aug;144(4):1899-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Oct;75(20):6581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700546</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Rho, Hyungmin" sort="Rho, Hyungmin" uniqKey="Rho H" first="Hyungmin" last="Rho">Hyungmin Rho</name>
</region>
<name sortKey="Doty, Sharon L" sort="Doty, Sharon L" uniqKey="Doty S" first="Sharon L" last="Doty">Sharon L. Doty</name>
<name sortKey="Kim, Soo Hyung" sort="Kim, Soo Hyung" uniqKey="Kim S" first="Soo-Hyung" last="Kim">Soo-Hyung Kim</name>
<name sortKey="Van Epps, Victor" sort="Van Epps, Victor" uniqKey="Van Epps V" first="Victor" last="Van Epps">Victor Van Epps</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000430 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000430 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32397574
   |texte=   Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (Malus pumila).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32397574" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020